
BGP Secure Routing Extension

– Quick installation Guide –

For SRx Software Suite 0.5.0

July 2017

www-x.antd.nist.gov/bgpsrx

bgpsrx-dev@nist.gov

Oliver Borchert, Kyehwan Lee, Kotikalapudi Sriram, Doug Montgomery

Introduction
BGP-SRx consists of a set of software modules that enable the usage of the Resource Public Key

Infrastructure (RPKI) Route Origin Validation as well as the usage of BGPSEC path validation. The design

of BGP-SRx is modular and can be used on a single machine or distributed.

The following software modules are provided:

SRxCryptoAPI - SCA
This is the Crypto module for BGPSEC path validation It is a standalone API that can be integrated into

router software such as Quagga, BIRD or others and provides the functionality of validating and signing

BGPSEC path attributes. Starting with SRx Software Suite 4.2 this API is one of the core APIs needed.

SRx-Proxy / SRx-Server - SRxSnP
The SRx-Server allows to outsource RPKI origin validation and BGPSEC path validation. It can run on the

BGP router or any other Linux based network reachable server. It provides the functionality of gathering

ROAS for RPKI validation and Keys for BGPsec path validation. It keeps track of changes within the

validation state and reports back to the router in case of changes. The SRx-Server is accessed via the SRx-

Proxy which is a light-weight API that does the communication with the server.

The SRx-Server comes with a set of test tools that allow to generate public and private keys, create a file

based key volt as well as test harnesses that simulate a validation cache etc. These tools are mainly for

test purpose but have the capability to be extended for more.

QuaggaSRx - QSRx
This is the SRx routing platform. Based on Quagga 0.99.22 this implementation is extended to allow policy

configuration for RPKI origin validation as well as BGPsec path validation. Starting with QuaggaSRx 0.4.2

the software includes the latest specification of the BGPsec protocol.

Even though we tested this implementation in different scenarios, appreciate bug reports to be send to

bgpsec-dev@antd.nist.gov

The current implementation does not include confederations.

BGPSEC-IO - BIO
BGPSEC-IO is the latest in the line of SRx software tools. It allows to test crypto modules for the

SRxCryptoAPI as well as BGPsec router implementations. BGPSEC-IO allows to send BGPsec traffic via

eBGP as well as iBGP. In addition, it allows to send plain BGP4 traffic. The software allows to have different

modes for signing failures – Fake key and signature information as well as BGP4 whenever it can’t sign. It

allows to generate multi hop fully signed bgpssec updates using either a configuration script, pre-

generated binary traffic, via command line or via pipe input. The configuration script as well as the

command line help -? are self-explanatory.

mailto:bgpsec-dev@antd.nist.gov

Quick Installation
This Guide is meant for a quick installation. The software is developed on CentOS6 as well as CentOS7

whereas the rpm script generation is not ported to the new CentOS7 system-d infrastructure yet.

This documents describes two methods of installation:

1. Use the installation and test scripts provided in the tar-ball

2. Manual installation

Scripted Installation – preferred
Starting with SRx 4.2.3 the software suite provides two shell scripts for installing and testing the

software. These scripts were only tested on CentOS6 and CentOS7 systems.

The scripted installation method uses two shell scripts:

1. buildBGP-SRx<version>.sh

2. testBGP-SRx<version>.sh

Step 1: Start the build script within the folder it is located in. It will correctly configure each software

module and install it locally within this folder in the sub-folder “local-<version>”.

Step 2: Start the test script. This script will generate some test configurations and does a test of BGPSEC-

IO together with SRxCryptoAPI. This will test the systems crypto capability and MUST NOT fail. Also, it

will generate a set of test scripts for the usage of BIO, QSRx, and SRxSnP.

Manual Installation
Install and test the software using the following steps. This makes it easier to troubleshoot in case

something went wrong. Most of the errors occur due to configuration mistakes.

To make it easy we specify two folder structures, SRX_FOLDER and SRX_INSTALL. The structure

SRX_FOLDER will contain all source files and SRX_INSTALL will contain the compiled and installed binaries

/ configurations. In the following paragraphs we simply refer to the m as STRX_FOLDER and SRX_INSTALL

and it is understood that they have to be replaced with the chosen folder names.

Now extract all software modules srx-crypto-api, bgpsec-io, srx-server, and quagga-srx inside the folder

SRC_FOLDER. This will provide the following folder structure:

 /SRX_FOLDER/bgpsec-io

 /SRX_FOLDER/quagga-srx

 /SRX_FOLDER/srx-crypto-api

 /SRX_FOLDER/srx-server

Install SRxCryptoAPI
This first step is to install and test the SRxCryptoAPI.

1. Copy the code to a folder of your choice. We call it the SRX_FOLDER. Specify an installation folder.

Let us call it SRX_INSTALL. You should have the following structure:

 /SRX_FOLDER/srx-crypto-api

Enter this folder

 cd SRX_FOLDER/srx-crypto-api

2. Call the configuration script and specify the installation folder.

 ./configure --prefix=/SRX_INSTALL

The configuration script checks if the system is ready for the software and reports possible errors.

Most likely header files are missing. For example, the library readline also has a readline-devel which

is not installed automatically with readline. In this case, use yum install readline-devel. An easy way

to find which package contains the header file is by querying yum.

For instance, yum provides */abc.h returns a list of packages that include the specified file.

3. Compile and install the libraries

 make

 make install

Normally no errors should be reported.

4. Now configure and test the installation.

a. Prepare the configuration

 cd /SRX_INSTALL/etc

 cp srxcryptoapi.conf.sample srxcryptoapi.conf

b. Edit the configuration file using vi or any other text editor. We use vi

 vi srxcryptoapi.conf

Edit the following entries:

Line 9: key-volt = “/var/lib/bgpsec-keys”

into

 key-volt = “/SRX_FOLDER/bgpsec-io/data”

Line 42: init_value = “PUB:/var/lib/bgpsec-keys/ski-list.txt;PRIV:var/lib/bgpsec-keys/ski-priv-

list.txt”

into

 init_value = “PUB:/SRX_FOLDER/bgpsec-io/data/ski-list.txt;PRIV:/SRX_FOLDER/bgpsec-

io/data /ski-priv-list.txt”

c. Perform the test

Switch into the install folder and call the tester

 cd /SRX_INSTALL/sbin

 ./srx_crypto_tester

If all went well the printout should end in

API initialized!

done

So far errors we encountered were due to errors in the configuration.

Install BGPSEC-IO
1. Copy the code to a folder of your choice. We call it the SRX_FOLDER. Specify an installation folder.

Let us call it SRX_INSTALL. You should have the following structure:

 /SRX_FOLDER/bgpsec-io

Enter this folder

 cd SRX_FOLDER/bgpsec-io

2. Call the configuration script and specify the installation folder.

 ./configure --prefix=/SRX_INSTALL sca_dir=/SRX_INSTALL

The configuration script checks if the system is ready for the software and reports possible errors.

Most likely header files are missing. For example, the library readline also has a readline-devel which

is not installed automatically with readline. In this case use yum install readline-devel. An easy way to

find which package contains the header file is by querying yum.

For instance, yum provides */abc.h returns a list of packages that include the specified file.

3. Compile and install the libraries

 make

 make install

Normally no errors should be reported.

4. Now configure the installation.

a. Prepare the generate the configuration file

 cd /SRX_INSTALL/bin

./bgpsecio -C bgpsecio.conf

This will generate a default fully documented configuration script.

b. Edit the bgpsecio.conf file

Open the file bgpsecio.conf with your preferred editor and adjust the following entries:

Line3: ski_file = “/var/lib/key-volt/ski-list.txt”;

 Change to:

 ski_file = “/SRX_FOLDER/bgpsec-io/data/ski-list.txt”;

Line4: ski_key_loc = “/var/lib/key-volt/”;

 Change to:

 ski_file = “/SRX_FOLDER/bgpsec-io/data/”;

This change allows us to test the installed keys and that the srx-crypto-api functions nicely

line9: mode = “BGP”;

 Change to:

 mode = “CAPI”;

This change allows to specify a different srx-crypto-api configuration file than the default

one. Here we specify the default one to make sure it uses the config file we want it to use.

Line 20: #capi_cfg = <configuration file>

 Change to:

 capi_cfg = “/SRX_INSTALL/etc/srx/srxcryptoapi.conf”

Now if you want to run in BGP mode you need to configure the session starting with line 23.

This version of bgpsec-io only supports one session but it is planned to support multiple

sessions in the future.

Furthermore, the configuration file allows to script bgpsec traffic – see the update section. An

update consists of the <prefix> < comma> (<as>[p<pCount>]?)*

In case no as list is provided, the prefix will be an origin announcement by bgpsec-io.

The disconnect value specifies the minimum up time after the last update is send. A zero “0”

value disables this function and the session stays up forever or until it times out.

There are other interesting settings that are pretty much self-explanatory.

One important issue to the AS path, the ski_list contains the AS numbers bgpsec-io has keys

for. In case an AS number is scripted where bgpsec-io does not have a private key for, it will

either DROP this update, generate a FAKE update or generate a BGP4 update instead.

Also BGPSEC-IO can print the traffic it receives. The printout is in a human readable “pretty”

format that follows the Wireshark GUI printout.

Also updates can be scripted either in the session or at the end globally. This makes more a

difference once bgpsec-io supports multi session and at this time it does not really matter

where updates are scripted.

The order in which updates are generated and played are:

i. Session

ii. Global

iii. Binary input

iv. Command line / piped input

5. Test the installation using the CAPI mode as configured above.

Switch into the install folder and start bgpsec-io

 cd /SRX_INSTALL/bin

 ./bgpsecio -f bgpsecio.conf

At this point it should have successfully validated 4 updates – only if the default data was used.

Now to run it against a BGP router, modify the entry mode=”CAPI” into mode=”BGP” and restart

bgpsecio.

Install SRx-Server
1. Copy the code to a folder of your choice. We call it the SRX_FOLDER. Specify an installation folder.

Let us call it SRX_INSTALL. You should have the following structure:

 /SRX_FOLDER/srx-server

Enter this folder

 cd SRX_FOLDER/srx-server

2. Call the configuration script and specify the installation folder.

 ./configure --prefix=/SRX_INSTALL sca_dir=/SRX_INSTALL

The configuration script checks if the system is ready for the software and reports possible errors.

Most likely header files are missing. For example, the library readline also has a readline-devel which

is not installed automatically with readline. In this case use yum install readline-devel. An easy way to

find which package contains the header file is by querying yum.

For instance, yum provides */abc.h returns a list of packages that include the specified file.

3. Compile and install the libraries

 make

 make install

Normally no errors should be reported.

4. Configure the server

the configuration file of the server is located in /SRX_INSTALL/etc – But for now there is not much to

configure. Have a look – it’s pretty simple.

5. Start the server

Switch into the install folder and start bgpsec-io

 cd /SRX_INSTALL/bin

 ./srx_server -f /SRX_INSTALL/etc/srx_server.conf

To send it into the background add an “&” after the command

 ./srx_server -f /SRX_INSTALL/etc/srx_server.conf &

To shut down the server at a later time, open a telnet session to port 17901 and type the command

 “shutdown x”

Install QuaggaSRx
6. Copy the code to a folder of your choice. We call it the SRX_FOLDER. Specify an installation folder.

Let us call it SRX_INSTALL. You should have the following structure:

 /SRX_FOLDER/quagga-srx

Enter this folder

 cd SRX_FOLDER/quagga-srx

7. Call the configuration script and specify the installation folder.

 ./configure --prefix=/SRX_INSTALL sca_dir=/SRX_INSTALL srx_dir=/SRX_INSTALL --disable-doc

Now on a stock install of CentOS 6 and CentOS 7 we needed to install the net-snmp-devel as well as

the dia package. The later one is problematic on CentOS 7 at this point because no rpm is yet

published. At least not that I know of.

To prevent issues with dia I recommend the configuration switch --disable-doc as shown in the

configuration example above.

The configuration script checks if the system is ready for the software and reports possible errors.

Most likely header files are missing. For example, the library readline also has a readline-devel which

is not installed automatically with readline. In this case use yum install readline-devel. An easy way to

find which package contains the header file is by querying yum.

For instance, yum provides */abc.h returns a list of packages that include the specified file.

8. Compile and install the libraries

 make

 make install

Normally no errors should be reported.

9. Configure the router

For configuration use the provided sample file located in /SRX_INSTALL/etx/bgpd.conf.samleSRx

You need to modify at least the following lines:

 Line 13: router bgp <My ASN>

 Line 14: bgp router-id <Best is the ip of the router itself>

 Line 96: srx evaluation origin_only

 enable bgpsec path validation

 srx evaluation bgpsec

 Line 292: network <prefix>

 here repeat this line for each prefix this router will originate

Line 304: srx bgpsec 0 1 DEADBEEF…

 remove the comment character ‘!’

 replace DEADBEEF…. With the correct SKI. Look into the file ski-list.txt

 remove the comment character ‘!’

 the first number 0 specifies the key index, the second number the algorithm id

Line 309: srx bgpsec active 0

 remove the comment character ‘!’

Line 314: neighbor 10.0.50.2 remote-as 32

Line 321: neighbor 10.0.50.2 bgpsec both

 Here modify the IP addresses accordingly as well as the ASN of the peer.

10. Start the server

The router needs to be started as root

 cd /SRX_INSTALL/sbin

 sudo ./bggpd -f /SRX_INSTALL/etc/bgpd.conf.sampleSRx -i /tmp/bgpd.pid

if the bgpsec-io is configured to print out received traffic one can create a topology where a bgpsec-io

generator sits on both ends, one sends traffic the other doesn’t – just listens.

Questions
For questions and bug reports, please send an email to bgpsrx-dev@antd.nist.gov

